
JOURNAL OF APPLIED POLYMER SCIENCE VOL. 12, PI'. 571-579( 1968) 

Dependence of the Thermal Conductivity 
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Synopsis 
An examination of the theory of thermal conductivity of aniorphous dielectrics as 

applied to polymeric materials indicates that it is reasonable to expect that the conduc- 
tivity is stress dependent. An experimental investigation was undertaken to determine 
the validity of this hypothesis for a number of plastics at  temperatures below their 
respective glass transition points. Poly(methy1 methacrylate), nylon, and Delrin were 
chosen as representative of a wide range of percentage crystallinity and were tested a t  
compressive stresses up to 140 kg./cm.2 and temperatures between 4 and 38°C. The 
results indicate that the conductivity may increase as much as 20% and that the de- 
pendence on stress is a function of temperature and the type of polymer examined. 

Introduction 

A number of investigators have noted that the thermal conductivity of 
a polymer can be modified through mechanical deformation. The data 
of Tautz' demonstrated the existence of such behavior for a number of types 
of rubber. In natural rubber the percentage increase in conductivity in the 
direction of stretch was found to be approximately equal to the per cent 
deformatian for strains up to about 300%, while a comparatively minor 
dependence was found in highly vulcanized rubbers. Tautz suggested that 
the observed behavior was a result of a decrease in structural disorder and 
which produced an increase in the scattering length for the elastic waves 
constituting the thermal transport. Eiermann and Hellwege2 also ob- 
served this type of phenomenon in tests performed on PMMA, PVC, and 
other polymers. The materials were heated to temperatures above their 
glass points and then plastically stretched. They were then returned to 
the glassy state before undergoing thermal testing. The conductivity was 
found to be anisotropic: augmented in the direction of deformation and 
diminished in the lateral direction. If it is assumed that the material pos- 
sesses a greater capability for transmitting thermal energy along polymer 
chains than between adjacent chain segments, this result can be attributed 
to orientation of the polymer chains in the direction of stretch. Hellwege 
and cO-workersla presenting similar data, proposed a model utilizing inter- 
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chain and intrachain conductivity. This approach resulted in a successful 
correlation between the anisotropic thermal conductivity and the aniso- 
tropic linear coefficient of thermal expansion. 

Hanson and Ho4 have suggested that the strain dependence of the con- 
ductivity can be explained without recourse to considerations of orientation 
and derived an expression for the thermal energy transmission rate per unit 
cross section. This equation, demonstrated to yield excellent agreement 
with data on natural rubber, exhibits the proper behavior through a simple 
increase in the distance which thermal energy is transmitted in each 
collision process. It is assumed that the other parameters affecting the 
transport rate are unaffected by elongation. However, it can be argued 
that the collision frequency is also modified because of the nonlinear nature 
of the bonding forces. Also, it does not appear reasonable to assume that 
a macroscopic deformation is transmitted to the microscopic level as an 
affine transformation of coordinates. Indeed, the theory of rubber elas- 
ticity would instead suggest a higher probability of elongated chain con- 
figuration without any significant change in intrachain distances. The 
derivation also ignores the fact that the number of segments and hence 
thermal emitters per unit cross-section increases under elongation. The 
result of this effect would be to make the per cent increase in thermal 
conductivity proportional to the axial strain for an incompressible medium, 
thus providing a rationale for the data of Tautz.’ 

In all of the cases discussed above, the mechanical strains were compa- 
rable to or larger than the percent changes in thermal conductivity they 
produced. The polymers all underwent their conductivity transformations 
at temperatures above glass transition. However, examination of a num- 
ber of models of thermal conduction, as applied to amorphous material, 
suggests that the thermal conductivity of a glassy polymer should also be 
dependent on its state of mechanical stress. The mechanisms for such a 
dependency are, in general, connected with small reversible deformations 
rather than the large deformations and associated orientation previously 
discussed. 

In the thermal transport models of Kincaid and Eyring6 and of Sakiadas 
and Coates; the thermal conductivity is inversely proportional to the 
distance across the free volume between adjacent hard-shell spherical 
molecules. Deformation of the material in question may be expected to 
change this distance and consequently produce a variation in the thermal 
conductivity. This effect could be large compared to  the strain if the free 
volume is small compared to the total volume. The theory of Kittel,’ 
devised to explain a sharp increase in thermal conductivity of glass with 
decreasing temperature, also appears to be relevant. Previously, as in the 
models of Bridgmana and Je f f r e~s ,~  it was assumed that the scattering 
distance for thermal transport was of the order of the molecular spacing or 
distance of short-range order for amorphous materials. However, Kittel 
advanced the hypothesis that at  sufficiently low temperatures the molecular 
oscillations correspond to wavelengths which are large compared to the 
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distance of short-range order, and that local disorder will consequently 
cause less scattering. If this same model is now applied to a material 
held at constant temperature, but undergoing deformation, a similar result 
is indicated. A change of the average separation between oscillating 
molecules or atoms will produce a change in the vibrational frequency 
spectrum because the binding forces are nonlinear. Application of Kittel's 
model indicates that a stress causing a shift in the thermal spectrum to 
higher frequencies would result in increased scattering, while lower frequen- 
cies would have the opposite effect. It should also be expected that a 
critical temperature exists for which the sensitivity of the conductivity to 
mechanical strain would be a maximum. This would correspond to the 
temperature for which the thermal oscillation frequency of highest prob- 
ability density yields a wavelength equal to the distance of short-range order. 

Examination of the above models for thermal transport suggests another 
manner in which elastic strain may modify the thermal conductivity. The 
application of a stress produces strains on a microscopic level which change 
the profile of the potential associated with holes or vacancies. A hole acts 
as a reflector of all particles with energies insufficient to surmount the 
potential barrier surrounding it. Therefore, holes act as scatterers in the 
transport of thermal energy. If the strain is such as to diminish the height 
of the potential barrier, this mode of scattering and its associated contribu- 
tion to thermal resistance will decrease. Such changes in potential barriers 
may also encourage crystallinity where such a tendency is already present, 
thereby increasing the average local order and further enhancing thermal 
conduction. 

Experiment a1 

The objective of the experiments was to investigate the possibility of 
interaction between applied stress and thermal conductivity in polymeric 
materials at temperatures below the glass point. Hence, the apparatus 
was designed so as to yield a high sensitivity to conductivity changes, al- 
though not necessarily providing precise data on the absolute value of the 
conductivity itself. Further, no attempt was made to identify the poly- 
mers used in this exploratory study beyond their generic names. The 
technique used for determining the conductivity was basically a one- 
dimensional symmetrical heat flow method in which the heat flux and 
temperature gradient were measured. A hydraulic mechanism was pro- 
vided to produce a constant compressive stress during testing. 

Samples to be tested were prepared by machining rods of commercial 
polymer to yield disks measuring approximately 2.5 cm. in diameter and 
0.65 cm. thick. The faces were polished to provide a flat and smooth 
contact surface. Aluminized Mylar was cemented to the periphery of 
each sample in order to obtain a surface with a low thermal radiation 
emissivity. Two matched samples were placed on opposite faces of a cy- 
lindrical heater assembly, forming a sandwich arrangement which was 
subsequently placed between the anvil and rain of the loading assembly. 
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In  all cases, the contacting surfaces were coated with a film of vacuum 
pump oil to minimize interface resistance. A series of tests was carried 
out with samples of different thicknesses and for varying numbers of 
interfaces to verify that, in fact, the thermal resistance between surfaces 
was negligible. This is extremely important because the contact resistance 
is generally load-dependent. 

The information necessary for the calculation of the thermal conductivity 
is the temperature difference between two points along the heat flux axis 
and the heat flux rate, in addition to the dimensions of the samples under 
test. Temperatures were measured in the heater, the anvil and the ram 
at positions adjacent to the faces of the polymer. Chromel-constantan 
thermocouples were used for this purpose and were mounted in such a 
manner as to insure that the applied stress was not transmitted to them, 
since their output characteristics are stress dependent. 

All testing was done in a vacuum environment in order to minimize 
edge losses and closely approximate one-dimensional axial heat flow. Such 
losses as occurred were mostly due to radiation and amounted to approxi- 
mately 0.5% of the axial flow when the temperature difference across each 
specimen was about 1°C. The lack of lateral heat Ao’w permits the use of 
a steady-state, one-dimensional heat flow equation which may be approxi- 
mated by the following finite difference expression: 

q = KA(T1 - To)/L (1) 
where TI is the temperature of the anvil face, To is the temperature of the 
heater face, L is the thickness of the specimen, A is the cross-sectional 
area of the specimen, q is the heat flux rate, and K is the thermal con- 
ductivity of the specimen. Since a similar equation may be written for the 
other specimen, the combined heat flow is given by: 

q o  = (KA/L)  (2To - Ti - Tz) (2) 
where qo is the heater generation rate and TZ is the temperature at  the ram 
face. Equation (2) may be solved for the thermal conductivity as a 
function of the measured parameters of the system. 

Results and Discussion 
Tests performed on PMMA under zero load condition yielded the thermal 

conductivity at various temperatures as shown in Figure 1. Measure- 
ments made under uniaxial compressive loading demonstrate a considerable 
variation in the thermal conductivity as a function of load. The per cent 
increase in conductivity is shown in Figure 2 for various temperatures 
with compressive stress as the abscissa. The error is estimated to be 
approximately +3y0 of the plotted value. It may be noted that the stress 
sensitivity is strongly temperature-dependent and that in one case the 
sensitivity decreases after achieving a maximum. Tests performed on 
samples of nylon and Delrin demonstrated somewhat less dependence on 
applied stress (Figures 3 and 4). In all cases the conductivity variation 
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Fig. 1. Thermal conductivity of poly(methy1 methacrylate) vs. temperature: (A)  cur- 
rent investigation; (-) data of Shoulberg and Shet1er;'o ( 0 )  data of Woodside and Wil- 
son;" (8) data of Bernhardt,?* (0) data of Holamuller and Munx.13 
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Fig. 2. Per cent increase in thermal conductivity vs. compressive stress for poly(methy1 
methacrylate) at various temperatures. 

observed was found to be a reversible function of stress. There was, 
however, a time dependence which was probably associated with the 
viscoelastic nature of the material. 

Although the data obtained here are limited, it is possible to make cer- 
tain preliminary conjectures concerning the origin of this phenomenon. 
In the case of PMMA, the maximum per cent thermal conductivity change 
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observed was about two orders of magnitude greater than the corresponding 
strain. This effectively rules out chain orientation rn a means of explain- 
ing the observations. Similarly, a relative displacement of scattering 
centers, as presented in the model of Hanson and H o , ~  would yield con- 
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Fig. 3. Per cent increase in thermal conductivity vs. compressive stress for nylon a t  var 
ious temperatures. 
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Fig. 4. Per cent increase in thermal conductivity versus compressive stress for Delrin at 
various temperatures: (0) 27°C.; (a) 38°C.; (0) 13'C. ; (A) 3°C. 
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ductivity variations of the same order as the strain, and hence must also 
be rejected from consideration. Even with the small variety of polymers 
tested, there seems to be sufficient evidence to rule out increased crystal- 
linity as a cause of the observations. PMMA, found to be the most 
sensitive to stress, is generally highly amorphous and should possess less 
tendency to crystallize than nylon or Delrin. A model patterned after 
that of Kincaid and Eyring,5 would seem to yield a behavior more suitable 
to explanation of the data. 

As a very crude approximation, consider a polymer consisting of hard- 
shell cylindrical molecules with segments oriented alternately in the 
2, y, and z directions. Further, restrict the examination only to thermal 
energy transported between molecules rather than along them, i.e. the 
interchain contribution to the thermal conductivity. The net velocity of 
transport between molecular centers may be obtained5 by considering the 
energy to travel at  infinite velocity across the cylinder and at  some char- 
acteristic velocity between the surface of the cylinders. This approach 
yields a transport velocity of: 

Ut = U , ( d / d f )  (3) 
where U t  is transport velocity, U ,  is characteristic velocity, d f  is the 
separation of surfaces, and d is the center-to-center distance. Ignoring 
the Poisson effect for the moment, a macroscopic strain will result in a 
corresponding transformation of molecular centers. This yields : 

= (d - do)/do (4) 

where do is initial separation and e is strain. 
center-to-center distance all takes place in the free distance: therefore; 

The actual change in the 

d f  - djo = d - do 

(df/do) = (dm’do) + [(d - do)/dol 

df /do = dfo/de + E 

(5)  

(6)  

(7) 

where d fo is initial free distance. Equation (5) can be rearranged: 

Combiriirig eq. (6) with ey. (4) yields: 

Wheu eq. (7) is substituted in eq. (3), the transport Velocity becomes: 

The ratio of the transport velocity in the strained state to the transport 
velocity in the initial unperturbed condition is simply: 

where U,O is initial transport velocity. 
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The thermal conductivity for amorphous substances is proportional to 
the transport velocity and the number of emitters per unit cross-section. 
For an incompressible material undergoing small deformations, the error 
introduced by ignoring the change in the number of emitters per cross- 
section due to Poisson’s effect, is of the order of the strain and will be 
neglected in this analysis. Hence, the ratio of the conductivity under 
strain to the initial conductivity is simply: 

K/Ko = (1 + 4/[1 + (d/d,)oeI (10) 
In order to determine whether the mechanism discussed above is capable 

of producing conduotivity changes of the order of magnitude observed in 
the experiments, some approximate values will be substituted into eq. (10). 
If it is assumed that on the average the free volume is dispersed uniformly 
throughout the solid, the ratio of the distance across the free volume to 
the center-to-center separation can be obtained from consideration of 
the geometry. If a value for the free volume fraction of the glass tem- 
perature of 1/4W4 is chosen, the resulting free distance fraction is 
approximately 1/60. Substituting this into eq. (10) along with a value of 
strain of 0.4% obtained for PMMA at the maximum loading yields an 
increase in conductivity of 32%. The maximum conductivity change 
actually observed for PMMA was 22%. Thus, the model, although crude, 
at least suggests results of the proper order of magnitude and offers 
encouragement for a more valid approach necessitating simultaneous 
consideration of interchain and intrachain transport and a statistical 
analysis of the molecule configurations. 

By employing the simple model discussed above, the variation of the 
increase in conductivity with temperature for a particular value of stress 
may be explained in the following manner. As the temperature of a poly- 
mer decreases, less microbrownian movement is possible, and hence, the 
strain occurs more and more within a polymer chain rather than between 
chains. The straining of the chain itself is produced by variation in the 
valence angles and interatomic distances, neither of which effect would be 
expected to significantly increase the thermal transport rate. The lesser 
sensitivity of the nylon and Delrin may be due to more highly conductive 
crystalline areas which effectively short-circuit thermal transport around 
stress sensitive amorphous zones. If such is the case, an increase in the 
conductance of the amorphous zones which account for the bulk of the total 
strain, would be observed only to a lesser degree in the overall conductance. 
The applied stress would have little effect on the conductance of a crystal- 
line zone, because the strong bonding would favor strains in the relatively 
weakly bonded amorphous zones. 

Conclusions 
The thermal conductivities of certain commercial polymers in the glassy 

state have been demonstrated to be stress dependent in compression. 
Previous observations in this field have been concerned with either rubbery 
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or plastic deformations and have indicated weaker dependencies than those 
presented herein. Whereas an explanation based upon chain orientation 
and alignment has generally sufficed for previous studies, this approach is 
inadequate for the data obtained in the current investigation. The 
approximate analysis presented indicates that the thermal transport 
models of Kincaid and Eyring and Sakiadas and Coates6 may be suitable 
points of departure for an understanding of the strong dependency observed 
in these tests. 

Taken from the dissertation submitted to the Faculty of the Polytechnic Institute of 
Brooklyn in partial fulfillment of the requirements for the degree of Doctor of Phi- 
losophy, 1966. 
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